Enabling checkpoint inhibitors with oncolytic viruses to deliver complete responses: a matter of timing

Cervera-Carrascon V1,2, Quixabeira D2, Munaro E2, Santos JM1,2, Havuinen R1,2, Siurala M1,2, Hemminki A1,2,3
1 TILT Biotherapeutics Ltd, Helsinki, Finland. 2 Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland. 3 Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland

1. Background

Checkpoint inhibitors (CIPIs) started a new golden era of immunotherapy for cancer treatment. Since approval of the first product in 2011, a number of these antibodies are now available for different indications. Thousands of trials are ongoing which could predict many further approvals soon. Unfortunately, only a minority of patients currently benefit from CPI treatment. One of the biggest limitations appears to be poor immune infiltration of many tumors, known as immune desert or excluded tumors. Oncolytic viruses are an interesting tool to use together with CPIs to increase the frequency and the quality of patients’ responses. Besides their inherent ability to raise the immune alarm towards the tumour, resulting in recruitment of lymphocytes and other cells, they can be armed with transgenes to potentiate these effects. In a data driven approach, adenosviruses expressing Tumour Necrosis Factor Alpha and interleukin 2 were identified as the optimal approach for recruiting and activating T-cells in tumors. In this approach, the regimen of administration must carefully optimized as it can affect the outcome of the treatment.

2. In vivo experimental design

3. Optimal regimen of administration for anti-PD1 and anti-PD-L1 are different when combined with virotherapy

4. PD-L1 expression is reversible in tumor cells and it is triggered after interferon gamma exposure

5. Acknowledgements and Funding

6. Contact